H/α -CN VERSUS H/β -CN RATE RATIOS IN THE SOLVOLYSIS OF SULFONATE ESTERS IN UNCONSTRAINED SYSTEMS. ADDITIONAL EVIDENCE FOR CONJUGATIVE STABILIZA-TION OF ATTACHED CARBOCATIONS BY THE CYAN0 MOIETY

> Paul G. Gassman*and Katsuhiro Saito Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Summary: H/α -CN and H/β -CN rate ratios have been measured for the solvolysis of sulfonate esters of relatively simple, noncyclic aliphatic alcohols. The β -CN function was found to be far more rate retarding than the α -CN function.

In general, physical organic chemists attempt to avoid writing reaction mechanisms which require the placement of a positive charge on carbons attached to strong electron-withdrawing groups. However, this tendency is primarily intuitive; little experimental data exist which support this approach. Recently, we have become very involved in evaluating the interaction of strong electron-withdrawing substituents on directly attached carbocations.^{1,2} These studies have shown that mechanistic speculation is often based on a mental extrapolation of β -substituent effects³ and that these extrapolations may be misleading due to major conjugative interactions. This would appear to be the situation for the cyano group.^{1,2d}

In an attempt to compare the effect of α - vs. β -cyano groups on the generation of an incipient cationic species, we have recently compared the rate ratios of $1-\lambda$.^{1d} As would be predicted on the basis of our earlier studies, ^{la-c} the *B*-cyano group was more rate retarding than the a-cyano group.

This has been rationalized as being the result of a major resonance stabilization by $\frac{4}{5}$ when the cyano function was in the α -position. Because of the rigid structure of the adamantyl skeleton, it was difficult to ascertain what, if any, through space polar interaction the cyano group of λ might have with the incip-

\+ **C-CZN** c-+ / ,c=c=A %

constrained systems was desirable. We now wish to report the results of such an investigation which uses simple noncyclic aliphatic hydrocarbons as substrates.

Table 1 lists the rates of solvolysis of a series of sulfonate esters in anhydrous $2, 2, 2$ -trifluoroethanol buffered with $2, 6$ -lutidine.⁵ As can be seen from the Table, the slowest relative rate observed was that of $\chi_{\rm C}$ which had a cyano group in the β -position. Comparison of ζ with $\zeta\psi$ showed a rate retardation by the β -cyano function of 7.9 x 10⁷. This would imply that in β and in other systems where β -cyano effects on solvolysis have been measured, $3c-f$ the inductive effect was not maximized.

Comparison of the sulfonate pairs $\frac{5}{2}$, $\frac{6}{8}$, $\frac{2}{7}$, $\frac{7}{8}$ and $\frac{8}{8}$ rate ratios of 3.51 x 10³, 1.55 x 10³, 5.15 x 10³, and 3.15 x 10³, gave H/a-CN. , respectively. It is clear from this series that the rate retarding influence of an α -cyano substituent is orders of magnitude less than the effect of a related β -cyano group. A comparison of $\chi_{\rm R}$ with $\chi_{\rm R}$ gives an α -CN/ β -CN rate ratio of 1.53 x 10⁴.

H/B-CN rate ratios could not be obtained for either system 5 or system 6 due to the involvement of an E2 elimination. In contrast to the rates for all of the compounds in Table 1, the rates of acid generation from $5p$ and $6p$ were extremely dependent on buffer concentration. Thus, it would appear that the presence of the β -cyano group of $\bar{\beta}$ b and β b was sufficient to cause a shift in mechanism from carbonium ion generation (S_N1) to concerted elimination (E2). This held for 2,6-lutidine, 2,6-di- t -butylpyridine, and sodium acetate as</u>

buffers.

Product studies showed that all of the compounds in Table 1 gave olefins as the major products. 6

ACKROWLEdEETENI. We are indebted to the National Science Foundation for Grant CHE78-10231 which supported this investigation.

 $\sim 10^{-1}$

8a

(a) Extrapolated from higher temperatures. (b) Taken from ref. la. (c) Compound $7p$ was too slow to measure at convenient temperatures. Thus, its rate was extrapolated from that of the corresponding tri-
flate (Zb') by multiplying the rate of Zb' by 5.8 x 10⁻⁶. This ratio represents the measured rate difference between 2% and the corresponding triflate $(5a')$.

RELEXEREEE RRA FRRIRRIES

- 1. (a) P.G. Gassman and J.J. Talley, J. Am. Chem. Soc., 102 , 1214 (1980); (b) P.G. Gassman and J.J. Talley, $ibid.$, 102, 4138 (1980); (c) D.A. Dixon, P.A. Charlier, and P.G. Gassman, $ibid.$, $102,$ 3957 (1980); (d) P.G. Gassman, K. Saito, and J.J. Talley, *ibid.,* in press.
- 2. For recent related experimental and theoretical studies, see (a) X. Creary, *J. Org. Chem.,* 44, 3938 (1979); (b) K.M. Koshy and T.T. Tidwell, *J. Am. Chem sot.,* 1216%?1980); (c) K.-T. Liu and C.-F. Sheu *Tetrahedron Lett.,* 4091 (1980); (d) M.N. Paddon-Row, C. Santiago, and K.N. Houk, J. Am. Chem. *Sot., 422, 6561 (1930).*
- 3. For selected examples of β-substituent effects, see: (a) P.G. Gassman, J.L. Marshall, J.G. Macmillan, and J.M. Hornback,, *J. Am. Chem. Sot.,* (1969); P.G. Gassman and J.G. Macmillan, $ibid.$, Ω 1, 5527 (1969); man, J.L. Marshall, and J.M. Hornback, *ibid., 5811* (1969); (b) P.G. Gassman and J.M. Hornback, *ibid*., <u>Q1,</u> 5817 (1969); (c) R. Muneyuki and T. Yano, *ibid.,* 92, 746 (1970); (d) J.B. Lambert and A.G. Holcomb, *ibid.*, 93, *2501* (1978); (e) D. (1978); (f) D. Lenoir, Tetrahedron Lett., 1563 (1974).
- 4. The same problem exists with other systems in which the β -cyano effect has been studied. ^{3c, f}
- 5. All rates were measured conductimetrically and showed excellent first-order kinetics through at least three half lives. The rates shown were independent of buffer concentration over a significant range.
- 6. Detailed product analyses and the synthetic details of all of the compounds in Table 1 will be presented in a full paper on this subject.

(Received in USA 11 December 1980)